Induction lamps, also called electrodeless lamps, consist of a high-frequency power generator, a coupling device that generates a magnetic field (essentially an antenna), and a glass housing that contains the gases and phosphor coating—no electrodes required. The main advantages of induction lighting are the ability to produce a substantial amount of light in a relatively compact package and a long lamp life due to the elimination of the electrodes. The major drawback of induction lighting is high installed cost. In applications where maintenance costs are high, though, induction lighting systems can be cost-effective.
Existing induction-lamp products are aimed at two distinct market niches. The higher-wattage versions available (55 to 165 W) offer very long life (up to 100,000 hours) and can be a good choice anywhere that relamping and maintenance are difficult or hazardous. These lamps have been used in all of the following locations:
Escalator wells
High-ceilinged spaces, including atriums (such as over open mall areas) and in warehouses and factories
Parking garages
Roadways, including bridges, tunnels, underpasses, and signs
Exterior pedestrian lighting
Lower-wattage induction lamps (20 and 23 watts) are also available as direct replacements for medium-base incandescent and compact fluorescent lamps. They offer efficacies of about 50 lumens per watt, CRIs of 82, and an expected life of 15,000 hours.
Friday, September 14, 2007
Tuesday, September 11, 2007
Induction Lighting - Online Retailer
Practically maintenance-free, induction lighting offers many features that make it an attractive light source and is emerging as one of the newest technologies in lighting. With a 100,000 hour rated life, these systems seldom need replacing. Particularly useful in applications where lamp replacement is cumbersome and expensive, as in some outdoor applications and in hard-to-reach areas such as tunnels, airports, public facilities, freezers, and many others. Ultra-Long Life - 100,000 hour rated life*, perfect for hard-to-reach applications Low Total Cost of Ownership - reduced energy and maintenance costs Crisp White Light - choice of color temperatures Outstanding Color Performance - no shift over lamp life, high 80+ color rendering High Reliability - instant hot and cold start-up and re-start Stable Light Output - no variation over a wide range of temperatures and voltage fluctuations High efficacy Because its light output is not significantly influenced by ambient temperature, the induction lamp can start at very low temperatures, maintaining at least 85% of nominal lumens. Induction lighting produces high quality light in a variety of color temperatures. This makes it useful in a multitude of applications while still offering improved efficiency. This gives lighting designers more options in their designs. Relatively insensitive to line voltage fluctuations, its light output remains constant over a wide range of input voltages. The induction lamp is ideal for indoor and outdoor applications where durability and long life is certainly a high priority. As a compact source, the induction lamp can be used in a wide range of fixtures, adding further flexibility for the lighting designer. The induction lighting system provides a longer-life lamp, superior lumen maintenance, and the crisp white light currently available from similar wattage metal halide lighting systems. These product advantages could turn into major dollar savings when considering maintenance, labor, and replacement lamp cost of existing metal halide lighting fixtures. In most cases the payback in maintenance savings will more than offset the initial cost of the system
More Induction Lighting FAQ
Q: What is the induction lamp system and how does induction lighting work?
A: The induction lamp system uses a revolutionary technology of light generation that combines the basic principles of induction and gas discharge. Void of electrodes this new technology delivers an unprecedented 100,000 hours of high quality white light.
Q: What are the components of the system?
A: The system is comprised of three components; the generator, the power coupler and lamp. The power coupler transfers energy from the HF generator to the discharge inside the glass bulb using an antenna that contains the primary induction coil and its ferrite core. The power coupler also has a heat conducting rod with mounting flange. The mounting flange allows the Induction lamp system to be mechanically attached to the luminaire.
Q: Why Induction Lighting?
A: Induction lamps offer an amazing 100,000 hours life making it virtually maintenance free. It offers crisp white light with 80+ CRI and a choice of 3K, 4K, 5K and 6K color temperatures. The high CRI light makes colors look brighter, more vibrant and more attractive. It produces up to 80 lumens of light for each watt of energy. This 80 LPW efficacy makes it as energy efficient as high CRI metal halide systems. Induction lamps offer high reliability and instant on and off. With less heat output.
Q: Is the induction lamp dimmable?
A: Yes. The patented integrated circuit board ballast allows for full dimming of all lamps, which can increase energy savings and provide smooth light transition from ignition to full burn. Other brands of induction lamps do not yet have this useful feature.
Q: Do induction lamps need a dedicated fixture?
A: Yes. Due to operating and thermal requirements the system needs to be properly installed in a suitable fixture.
Q: Can running a lamp interfere with computers or any other electronic device?
A: No. It runs at a low 210KHz and complies with FCC rules with no interference under normal circumstances.
Q: Will the induction lighting system interfere with telecommunication equipment?
A: No. The FCC standards are in place to protect navigation and radio communications. The system will not interfere with portable or cellular/mobile phones.
Q: Is the light output of an induction lamp affected by low temperatures? High temperatures?
A: The lamp's amalgam fill technology and the heat conduction rod in the center create stable light output over a wide range of ambient temperatures, maintaining at least 85% of nominal lumens from -30° F to 130° F (for an enclosed fixture with heatsink). Induction lamps can start at temperatures as low as -40° F.
Q: Does operating position affect output?
A: No. The universal operating position does not affect the performance of the induction lamp system.
Q: Is the induction lamp system vibration-resistant?
A: Yes. The fact that induction lamps have no electrodes make them more reliable in high-vibration and gusty applications. The induction lamp system has proven its durability in bridges, tunnels, and signage applications.
Q: What, if any, is the effect of voltage supply fluctuations on the performance of the induction system?
A: Due to the built-in pre-conditioner in the HF generator, which provides a well stabilized internal supply voltage (a wide operating voltage range of +/- 20V) to the HF generator, the light output, consumed power and system efficacy (efficiency) of lamp system vary by less than 2% as a result of mains voltage fluctuations. There is no noticeable effect (visual or measurable) on the color performance (color temperature, color rendering, etc.) due to supply voltage fluctuation.
Q: Will induction lighting fade or damage materials?
A: The amount of ultraviolet light generated by an 80W lamp is roughly equivalent to that of a regular fluorescent lamp per 1000 lux. The permissible exposure time (PET) is +40 hours per 1000 lux, generously above the norm (24 hours per 1000 lux). The damage factor for materials is rated at a low 0.3 so induction lamps can be used in open luminaries without any front glass.
Q: How far can the HF generator be remotely mounted from the power coupler/discharge vessel assembly?
A: The length of the coaxial cable connecting them (15"). Because the cable forms part of the oscillating circuit of the HF generator, the length of the cable cannot be modified.
Q: At the end of life, must all components be replaced?
A: All three components are separately replaceable, however, induction lights are almost always supplied as a three-component system, even for relamping. End of life usually means the generator must be replaced, and at the time, it is usually recommended to replace the bulb, as phosphor degeneration at 100,000 hours lowers lumen output up to 37%.
Q: Why is induction lighting technology worth more?
A: Induction lighting systems offer five to ten times the life of HID systems for only two to three times the cost of the HID lamp and ballast. In almost all cases the payback in maintenance savings will more than offset the additional cost of the initial system.
Q: What's new with Induction Lighting?
A: Lamps are dimmable have an industry low operating frequency of only 210KHz which reduces interference and increases life span. Plans for a wider range of wattages will expand applications into residential and larger/higher outdoor uses.
A: The induction lamp system uses a revolutionary technology of light generation that combines the basic principles of induction and gas discharge. Void of electrodes this new technology delivers an unprecedented 100,000 hours of high quality white light.
Q: What are the components of the system?
A: The system is comprised of three components; the generator, the power coupler and lamp. The power coupler transfers energy from the HF generator to the discharge inside the glass bulb using an antenna that contains the primary induction coil and its ferrite core. The power coupler also has a heat conducting rod with mounting flange. The mounting flange allows the Induction lamp system to be mechanically attached to the luminaire.
Q: Why Induction Lighting?
A: Induction lamps offer an amazing 100,000 hours life making it virtually maintenance free. It offers crisp white light with 80+ CRI and a choice of 3K, 4K, 5K and 6K color temperatures. The high CRI light makes colors look brighter, more vibrant and more attractive. It produces up to 80 lumens of light for each watt of energy. This 80 LPW efficacy makes it as energy efficient as high CRI metal halide systems. Induction lamps offer high reliability and instant on and off. With less heat output.
Q: Is the induction lamp dimmable?
A: Yes. The patented integrated circuit board ballast allows for full dimming of all lamps, which can increase energy savings and provide smooth light transition from ignition to full burn. Other brands of induction lamps do not yet have this useful feature.
Q: Do induction lamps need a dedicated fixture?
A: Yes. Due to operating and thermal requirements the system needs to be properly installed in a suitable fixture.
Q: Can running a lamp interfere with computers or any other electronic device?
A: No. It runs at a low 210KHz and complies with FCC rules with no interference under normal circumstances.
Q: Will the induction lighting system interfere with telecommunication equipment?
A: No. The FCC standards are in place to protect navigation and radio communications. The system will not interfere with portable or cellular/mobile phones.
Q: Is the light output of an induction lamp affected by low temperatures? High temperatures?
A: The lamp's amalgam fill technology and the heat conduction rod in the center create stable light output over a wide range of ambient temperatures, maintaining at least 85% of nominal lumens from -30° F to 130° F (for an enclosed fixture with heatsink). Induction lamps can start at temperatures as low as -40° F.
Q: Does operating position affect output?
A: No. The universal operating position does not affect the performance of the induction lamp system.
Q: Is the induction lamp system vibration-resistant?
A: Yes. The fact that induction lamps have no electrodes make them more reliable in high-vibration and gusty applications. The induction lamp system has proven its durability in bridges, tunnels, and signage applications.
Q: What, if any, is the effect of voltage supply fluctuations on the performance of the induction system?
A: Due to the built-in pre-conditioner in the HF generator, which provides a well stabilized internal supply voltage (a wide operating voltage range of +/- 20V) to the HF generator, the light output, consumed power and system efficacy (efficiency) of lamp system vary by less than 2% as a result of mains voltage fluctuations. There is no noticeable effect (visual or measurable) on the color performance (color temperature, color rendering, etc.) due to supply voltage fluctuation.
Q: Will induction lighting fade or damage materials?
A: The amount of ultraviolet light generated by an 80W lamp is roughly equivalent to that of a regular fluorescent lamp per 1000 lux. The permissible exposure time (PET) is +40 hours per 1000 lux, generously above the norm (24 hours per 1000 lux). The damage factor for materials is rated at a low 0.3 so induction lamps can be used in open luminaries without any front glass.
Q: How far can the HF generator be remotely mounted from the power coupler/discharge vessel assembly?
A: The length of the coaxial cable connecting them (15"). Because the cable forms part of the oscillating circuit of the HF generator, the length of the cable cannot be modified.
Q: At the end of life, must all components be replaced?
A: All three components are separately replaceable, however, induction lights are almost always supplied as a three-component system, even for relamping. End of life usually means the generator must be replaced, and at the time, it is usually recommended to replace the bulb, as phosphor degeneration at 100,000 hours lowers lumen output up to 37%.
Q: Why is induction lighting technology worth more?
A: Induction lighting systems offer five to ten times the life of HID systems for only two to three times the cost of the HID lamp and ballast. In almost all cases the payback in maintenance savings will more than offset the additional cost of the initial system.
Q: What's new with Induction Lighting?
A: Lamps are dimmable have an industry low operating frequency of only 210KHz which reduces interference and increases life span. Plans for a wider range of wattages will expand applications into residential and larger/higher outdoor uses.
Wednesday, September 05, 2007
Compact Fluorescents Face Tough Competition
Energy-efficient lighting¹s flagship product ‹ the compact fluorescent lamp (CFL) ‹ has always had competitors, but the field is becoming more crowded.
Based on a study of the US marketplace, the increasing number of competitors stand to capture about two thirds of the incandescent-replacement market potential in the residential sector. The CFL's competitors fall into four groups:
(1) those that have been on the scene for a very long time, e.g. the standard incandescent GLS (general lighting service) lamp, known as the A-lamp in North America),
(2) those that represent recent, but incremental, innovations based on established products (e.g. the halogen infrared PAR lamp), and
(3) those that represent dramatic innovations, often bringing a whole new category of lighting into competition with the CFL (e.g. small, high-performance metal-halide lamps), and
(4) fundamental breakthroughs in technology (e.g. electrodeless induction lighting), some of which have been unveiled but are not yet in the catalogs.
One way to estimate the market potential for the CFL is through ³top-down² methods, in which current growth rates, population, and other factors are extrapolated to the future. A complementary method is a ³bottom-up² look at the technical potential for cost-effective energy savings through increased use of the products. One such study has been recently completed by one of us (Vorsatz) for the US residential and commercial sectors. The study examines the potential for indoor lighting in the year 2010. We summarize the results for CFLs in the remainder of this section.
In terms of energy use, the total US commercial-sector energy savings potential is divided as follows: Incandescent replacements account for 57%, while corresponding figures for fluorescent and high-intensity discharge replacements are 39 and 4% respectively. CFLs and halogen infrared reflector (HIR) accounts for most of the incandecent replacement potential.
For the residential market, the vast majority ofthe savings potential is from incandescent lamp replacements, as very few linear fluorescent or HID sources are used there today. Choosing the most energy-saving incandescent replacements results in an applicable stock of 2.9 billion incandescent lamps that can be replaced cost-effectively by energy-efficient lamps by the year 2010, apportioned 27% to more efficient incandescents (including the installation of lighting controls in some cases), 35% to halogen infrared, and 35% to CFLs. These market shares were obtained by systematically comparing and ranking competing retrofit options in order of decreasing cost-effectiveness.
Although CFLs end up facing significant competition from other incandescent replacement lamps, the quantity of CFLs called for is, nonetheless, considerable and represents a market for the residential sector. If it is assumed that the average burn time of a CFL is four hours per day, then the present annual sales would need to be about 150 million units in order to maintain a stock of just over 1 billion lamps. This sales volume is several times the size of the current market.
KEY MARKET NICHES FOR THE CFL
No application is the exclusive domain of the CFL, i.e. where no other light source can compete. (One exception is a trend towards what are called ³dedicated fixtures², wherein the base is designed to accommodate only the pin-based CFL). There are, of course, also market niches that are not currently available to CFLs. These include fixtures operated with motion sensors or conventional incandescent dimmers.
The main factors driving consumer interest in the CFL are energy savings and long service life. From an energy standpoint, this means that the most attractive applications are those with a large number of burning hours in a given year (thus creating a faster payback time on the incremental investment in the up-front cost of the CFL versus the competing incandescent lamp). For the commercial sector, this represents the vast majority of incandescent sockets, especially ultra-high-use applications such as Exit signs (of which there are tens of millions in the US). However, in the residential sector there are on average 30 or so sockets in a given US home, and only 510 are typically cost-effective applications for the CFL.
THE COMPETITION
On the one hand, CFL innovations resulting in entire new lamp shapes (e.g. the flat 2D or F-lamp technologies) and a proliferation of sizes and improved performance characteristics have helped the CFL capture an increasing market share. However, competitors to the CFL can be found now in virtually every light source family (incandescent, fluorescent, HID, induction, and LED). While not all are superior or even equal in terms of efficiency, many will be more attractive to consumers owing to other attributes such as longer service life, brilliance, better color rendering, ease of dimming, or environmental attributes.
Standard incandescent lamps have the distinct advantages of low first cost, no mercury, and sometimes smaller size, compared to the CFL. Color rendering is superior and lumen depreciation is lower than that of CFLs. For no other technology is dimming as problem-free and inexpensive, although incandescent dimming, in many cases, results in color shift (towards warmer color) and an audible buzzing sound. Their prime disadvantages are high operating cost (energy inefficiency) and short life. A relatively new generation of ³energy-saving² incandescents are marginally more efficient than standard incandescents, and have longer service lives.
Tungsten-halogen lamps have the same advantages (even more so in most cases) and disadvantages as standard incandescents. Additional disadvantages are the adverse impacts of dimming on life and efficiency and high operating temperature. Halogen reflector lamps perform much better than CFL reflector lamps. A new line of dichroic low-voltage halogen lamps, with infrared coatings on the capsule, is a step forward in efficiency (IAEEL 2/97). Important to the equation, the transformers that run the low-voltage lamps have about doubled in efficiency in recent years.
Full-size fluorescent lamps excel in almost every aspect over CFLs, although not all full-size fluorescents have performance attributes that rival the CFL. Their prime disadvantages are large size, difficulty in directing light towards a specific area, and difficulty in achieving aesthetic applications in residential settings. The narrow T5 and super-narrow T2 technologies overcome these disadvantages rather effectively (although the high brightness of the T5 lamps can be a problem in residential applications). The T5 will be available in the future in a circular format, making it an interesting competitor for torchiere applications among others (IAEEL 2/97). Dimming technology is more established and widely available for full-size fluorescents than for CFLs.
The electrodeless induction lamps are neck-in-neck competitors with the CFL in several respects, but are extremely new in the US market and have not as yet caused a large upset. Electromagnetic interference is a main disadvantage, although manufacturers claim to have overcome it. The reflector-type design of some of the electrodeless lamps limits their field of application slightly. It is not yet clear whether the mature market price will compete with the CFL. A newcomer to this field is Osram's Inductively Coupled Electrodeless Lamp (I.C.E., formerly called the ³Endura² lamp), with a high-lumen package that would only compete with CFLs in indirect illumination applications (IAEEL 2/97). The I.C.E lamp is supposed to be on the market in 1998.
Until recently, two classes of HID light sources (metal halide and high-pressure sodium) were not threats to the CFL, except perhaps for certain outdoor applications. Significant strides in technology have resulted in smaller lamps with color-rendering performance similar or better to that of CFLs. In many cases, these lamps are longer-lived and more energy-efficient than CFLs, and have far more stable color rendering, color temperature, and efficacy over a range of operating positions. Some of the emerging metal halide products are shaped like familiar PAR lamps and are superior in terms of color performance. Especially severe competition may be seen in the newly emerging ³torchiere² (halogen uplighter) market, where double-ended halogens currently pose a considerable fire hazard and consume excessive amounts of energy. HID sources will probably compete most strongly in outdoor lighting (residential) and downlighting (commercial) ‹ both important market niches for the CFL. HID sources, however, do not have good dimming performance.
The new low-wattage ceramic-burner metal halide technology overcomes much of the color instability problems of the last generation of metal halides (IAEEL 2/97). Their relatively small lumen packages, the availability of both pin and screw bases, good depreciation characteristics, lower UV emissions, and superb efficacy and color rendering make them formidable emerging competitors to the CFL. Even high-pressure sodium lamps, e.g. Philips' White SON, stand to compete with the CFL in some applications. Osram's hybrid sodium-xenon lamps (e.g. the Colorstar DSX2) are potential CFL competitors in terms of lumen output, life, and efficacy, but only in applications where color rendering is less critical. Two-step light output for the DSX2 adds to its appeal.
The sulfur lamp and other relatively high-light-output sources have similar or superior performance characteristics, although they sometimes require sophisticated light-distribution systems, such as light guides, mirror-based distribution, fiber optics, or large indirect fixtures. These applications would be limited to the non-residential sector, probably even in the case of lower-wattage sulfur lamp products that may emerge in the future.
Lastly, Exit signs are a very promising market for CFLs, especially given their long life compared to incandescents. No other application offers such large energy-cost savings as the 24-hour Exit sign. Light-emitting diode (LED) Exit signs may displace CFLs, although their costs are significantly higher. In Europe, however, the call for green exit signs has slowed the penetration of LED signs. In Sweden, Belgium, and the Netherlands, for example, CFLs had captured virtually the entire exit sign market more than four years ago (IAEEL 3/93).
While competition is getting stiffer, we hope that the CFL will always find its rightful socket. It is certainly more incumbent on lighting manufacturers, and their allies, than ever before to innovate and bring to market new CFL products that help to maintain, if not expand, the CFL's market prominence.
Evan Mills
Diana Vorsatz
Evan Mills, Lawrence Berkeley National Laboratory, US
Tel: +1 510 486-6784
Fax +1 510 486-5394
Email: emills@lbl.gov
Diana Urge-Vorsatz,Central European University, Hungary
Tel: +36 1 327-3095
Fax: +36 1 327-3031
Email: vorsatzd@ceu.hu
For more information on the market potential of competing lamp types, see D. Vorsatz. 1996. ²Exploring U.S. Residential and Commercial Electricity Conservation Potentials: Analysis of the Lighting Sector². Ph.D. Dissertation, U.C. Los Angeles.
Based on a study of the US marketplace, the increasing number of competitors stand to capture about two thirds of the incandescent-replacement market potential in the residential sector. The CFL's competitors fall into four groups:
(1) those that have been on the scene for a very long time, e.g. the standard incandescent GLS (general lighting service) lamp, known as the A-lamp in North America),
(2) those that represent recent, but incremental, innovations based on established products (e.g. the halogen infrared PAR lamp), and
(3) those that represent dramatic innovations, often bringing a whole new category of lighting into competition with the CFL (e.g. small, high-performance metal-halide lamps), and
(4) fundamental breakthroughs in technology (e.g. electrodeless induction lighting), some of which have been unveiled but are not yet in the catalogs.
One way to estimate the market potential for the CFL is through ³top-down² methods, in which current growth rates, population, and other factors are extrapolated to the future. A complementary method is a ³bottom-up² look at the technical potential for cost-effective energy savings through increased use of the products. One such study has been recently completed by one of us (Vorsatz) for the US residential and commercial sectors. The study examines the potential for indoor lighting in the year 2010. We summarize the results for CFLs in the remainder of this section.
In terms of energy use, the total US commercial-sector energy savings potential is divided as follows: Incandescent replacements account for 57%, while corresponding figures for fluorescent and high-intensity discharge replacements are 39 and 4% respectively. CFLs and halogen infrared reflector (HIR) accounts for most of the incandecent replacement potential.
For the residential market, the vast majority ofthe savings potential is from incandescent lamp replacements, as very few linear fluorescent or HID sources are used there today. Choosing the most energy-saving incandescent replacements results in an applicable stock of 2.9 billion incandescent lamps that can be replaced cost-effectively by energy-efficient lamps by the year 2010, apportioned 27% to more efficient incandescents (including the installation of lighting controls in some cases), 35% to halogen infrared, and 35% to CFLs. These market shares were obtained by systematically comparing and ranking competing retrofit options in order of decreasing cost-effectiveness.
Although CFLs end up facing significant competition from other incandescent replacement lamps, the quantity of CFLs called for is, nonetheless, considerable and represents a market for the residential sector. If it is assumed that the average burn time of a CFL is four hours per day, then the present annual sales would need to be about 150 million units in order to maintain a stock of just over 1 billion lamps. This sales volume is several times the size of the current market.
KEY MARKET NICHES FOR THE CFL
No application is the exclusive domain of the CFL, i.e. where no other light source can compete. (One exception is a trend towards what are called ³dedicated fixtures², wherein the base is designed to accommodate only the pin-based CFL). There are, of course, also market niches that are not currently available to CFLs. These include fixtures operated with motion sensors or conventional incandescent dimmers.
The main factors driving consumer interest in the CFL are energy savings and long service life. From an energy standpoint, this means that the most attractive applications are those with a large number of burning hours in a given year (thus creating a faster payback time on the incremental investment in the up-front cost of the CFL versus the competing incandescent lamp). For the commercial sector, this represents the vast majority of incandescent sockets, especially ultra-high-use applications such as Exit signs (of which there are tens of millions in the US). However, in the residential sector there are on average 30 or so sockets in a given US home, and only 510 are typically cost-effective applications for the CFL.
THE COMPETITION
On the one hand, CFL innovations resulting in entire new lamp shapes (e.g. the flat 2D or F-lamp technologies) and a proliferation of sizes and improved performance characteristics have helped the CFL capture an increasing market share. However, competitors to the CFL can be found now in virtually every light source family (incandescent, fluorescent, HID, induction, and LED). While not all are superior or even equal in terms of efficiency, many will be more attractive to consumers owing to other attributes such as longer service life, brilliance, better color rendering, ease of dimming, or environmental attributes.
Standard incandescent lamps have the distinct advantages of low first cost, no mercury, and sometimes smaller size, compared to the CFL. Color rendering is superior and lumen depreciation is lower than that of CFLs. For no other technology is dimming as problem-free and inexpensive, although incandescent dimming, in many cases, results in color shift (towards warmer color) and an audible buzzing sound. Their prime disadvantages are high operating cost (energy inefficiency) and short life. A relatively new generation of ³energy-saving² incandescents are marginally more efficient than standard incandescents, and have longer service lives.
Tungsten-halogen lamps have the same advantages (even more so in most cases) and disadvantages as standard incandescents. Additional disadvantages are the adverse impacts of dimming on life and efficiency and high operating temperature. Halogen reflector lamps perform much better than CFL reflector lamps. A new line of dichroic low-voltage halogen lamps, with infrared coatings on the capsule, is a step forward in efficiency (IAEEL 2/97). Important to the equation, the transformers that run the low-voltage lamps have about doubled in efficiency in recent years.
Full-size fluorescent lamps excel in almost every aspect over CFLs, although not all full-size fluorescents have performance attributes that rival the CFL. Their prime disadvantages are large size, difficulty in directing light towards a specific area, and difficulty in achieving aesthetic applications in residential settings. The narrow T5 and super-narrow T2 technologies overcome these disadvantages rather effectively (although the high brightness of the T5 lamps can be a problem in residential applications). The T5 will be available in the future in a circular format, making it an interesting competitor for torchiere applications among others (IAEEL 2/97). Dimming technology is more established and widely available for full-size fluorescents than for CFLs.
The electrodeless induction lamps are neck-in-neck competitors with the CFL in several respects, but are extremely new in the US market and have not as yet caused a large upset. Electromagnetic interference is a main disadvantage, although manufacturers claim to have overcome it. The reflector-type design of some of the electrodeless lamps limits their field of application slightly. It is not yet clear whether the mature market price will compete with the CFL. A newcomer to this field is Osram's Inductively Coupled Electrodeless Lamp (I.C.E., formerly called the ³Endura² lamp), with a high-lumen package that would only compete with CFLs in indirect illumination applications (IAEEL 2/97). The I.C.E lamp is supposed to be on the market in 1998.
Until recently, two classes of HID light sources (metal halide and high-pressure sodium) were not threats to the CFL, except perhaps for certain outdoor applications. Significant strides in technology have resulted in smaller lamps with color-rendering performance similar or better to that of CFLs. In many cases, these lamps are longer-lived and more energy-efficient than CFLs, and have far more stable color rendering, color temperature, and efficacy over a range of operating positions. Some of the emerging metal halide products are shaped like familiar PAR lamps and are superior in terms of color performance. Especially severe competition may be seen in the newly emerging ³torchiere² (halogen uplighter) market, where double-ended halogens currently pose a considerable fire hazard and consume excessive amounts of energy. HID sources will probably compete most strongly in outdoor lighting (residential) and downlighting (commercial) ‹ both important market niches for the CFL. HID sources, however, do not have good dimming performance.
The new low-wattage ceramic-burner metal halide technology overcomes much of the color instability problems of the last generation of metal halides (IAEEL 2/97). Their relatively small lumen packages, the availability of both pin and screw bases, good depreciation characteristics, lower UV emissions, and superb efficacy and color rendering make them formidable emerging competitors to the CFL. Even high-pressure sodium lamps, e.g. Philips' White SON, stand to compete with the CFL in some applications. Osram's hybrid sodium-xenon lamps (e.g. the Colorstar DSX2) are potential CFL competitors in terms of lumen output, life, and efficacy, but only in applications where color rendering is less critical. Two-step light output for the DSX2 adds to its appeal.
The sulfur lamp and other relatively high-light-output sources have similar or superior performance characteristics, although they sometimes require sophisticated light-distribution systems, such as light guides, mirror-based distribution, fiber optics, or large indirect fixtures. These applications would be limited to the non-residential sector, probably even in the case of lower-wattage sulfur lamp products that may emerge in the future.
Lastly, Exit signs are a very promising market for CFLs, especially given their long life compared to incandescents. No other application offers such large energy-cost savings as the 24-hour Exit sign. Light-emitting diode (LED) Exit signs may displace CFLs, although their costs are significantly higher. In Europe, however, the call for green exit signs has slowed the penetration of LED signs. In Sweden, Belgium, and the Netherlands, for example, CFLs had captured virtually the entire exit sign market more than four years ago (IAEEL 3/93).
While competition is getting stiffer, we hope that the CFL will always find its rightful socket. It is certainly more incumbent on lighting manufacturers, and their allies, than ever before to innovate and bring to market new CFL products that help to maintain, if not expand, the CFL's market prominence.
Evan Mills
Diana Vorsatz
Evan Mills, Lawrence Berkeley National Laboratory, US
Tel: +1 510 486-6784
Fax +1 510 486-5394
Email: emills@lbl.gov
Diana Urge-Vorsatz,Central European University, Hungary
Tel: +36 1 327-3095
Fax: +36 1 327-3031
Email: vorsatzd@ceu.hu
For more information on the market potential of competing lamp types, see D. Vorsatz. 1996. ²Exploring U.S. Residential and Commercial Electricity Conservation Potentials: Analysis of the Lighting Sector². Ph.D. Dissertation, U.C. Los Angeles.
Induction Luminaire is rated for 100,000 hr of use
Product News Network, Oct 4, 2005
With 20-year rated life, Mercmaster III is suited for hazardous and non-hazardous industrial lighting applications where access for relamping is difficult. It utilizes QL induction technology, which offers instant restrike, exhibits little or no sensitivity to power fluctuations, and produces no flickering or stroboscopic effect. Each product, featuring under 10% harmonic distortion, comes with discharge vessel, power coupler, and high-frequency generator.
********************
ROSEMONT, IL, September 27, 2005 -- Appleton, a worldwide leader in hazardous location electrical equipment, today introduced its new Mercmaster III Induction Luminaire featuring QL Induction technology.
With a 20-year rated life or 100,000 hours, this unique fixture provides a cost-effective, long-term solution for hazardous and non-hazardous industrial lighting needs, and is especially effective where access for relamping is difficult, maintenance is prohibitively expensive, and reliability is absolutely essential. Even after 60,000 hours of use, the Mercmaster III Induction Luminaire should maintain 70 percent of its total light output.
QL induction technology promises many additional benefits to Mercmaster III Induction Luminaire users including: instant restrike; T3C "T Code" (maximum internal temperature is 136-160 degrees C), no cycling at end-of-life, no flickering or stroboscopic effect, little or no sensitivity to power fluctuations, low harmonic distortion (<10 percent), and frequency of 50/60 Hz.
Current lamp types such as fluorescent, mercury, metal halide, pulse-start metal halide or high-pressure sodium provide only 3-5 years of life expectancy. Because Appleton's latest innovation delivers more than 4 times that service life it helps users achieve greater productivity, improved safety and reduced maintenance expense.
For faster, hassle-free installations, the new fixture ships complete with discharge vessel, power coupler and high frequency generator.
For more information contact your local Appleton representative or call Appleton at 800-621-1506. On the web, www.appletonelec.com. E-mail: literature@egseg.com.
ABOUT APPLETON
Founded in 1903, Appleton manufactures a complete line of electrical products for hazardous and non-hazardous locations. It is a brand of the EGS Electrical Group.
EGS Electrical Group o 9377 West Higgins Road o Rosemont, Illinois o 60018
All products and names mentioned are the property of their respective owners. While EGS Electrical Group has made every effort at the time of publication to ensure the accuracy of the information provided herein, product specifications, configurations, prices, system/component/options availability are all subject to change without notice.
COPYRIGHT 2005 ThomasNet, Incorporated
COPYRIGHT 2005 Gale Group
With 20-year rated life, Mercmaster III is suited for hazardous and non-hazardous industrial lighting applications where access for relamping is difficult. It utilizes QL induction technology, which offers instant restrike, exhibits little or no sensitivity to power fluctuations, and produces no flickering or stroboscopic effect. Each product, featuring under 10% harmonic distortion, comes with discharge vessel, power coupler, and high-frequency generator.
********************
ROSEMONT, IL, September 27, 2005 -- Appleton, a worldwide leader in hazardous location electrical equipment, today introduced its new Mercmaster III Induction Luminaire featuring QL Induction technology.
With a 20-year rated life or 100,000 hours, this unique fixture provides a cost-effective, long-term solution for hazardous and non-hazardous industrial lighting needs, and is especially effective where access for relamping is difficult, maintenance is prohibitively expensive, and reliability is absolutely essential. Even after 60,000 hours of use, the Mercmaster III Induction Luminaire should maintain 70 percent of its total light output.
QL induction technology promises many additional benefits to Mercmaster III Induction Luminaire users including: instant restrike; T3C "T Code" (maximum internal temperature is 136-160 degrees C), no cycling at end-of-life, no flickering or stroboscopic effect, little or no sensitivity to power fluctuations, low harmonic distortion (<10 percent), and frequency of 50/60 Hz.
Current lamp types such as fluorescent, mercury, metal halide, pulse-start metal halide or high-pressure sodium provide only 3-5 years of life expectancy. Because Appleton's latest innovation delivers more than 4 times that service life it helps users achieve greater productivity, improved safety and reduced maintenance expense.
For faster, hassle-free installations, the new fixture ships complete with discharge vessel, power coupler and high frequency generator.
For more information contact your local Appleton representative or call Appleton at 800-621-1506. On the web, www.appletonelec.com. E-mail: literature@egseg.com.
ABOUT APPLETON
Founded in 1903, Appleton manufactures a complete line of electrical products for hazardous and non-hazardous locations. It is a brand of the EGS Electrical Group.
EGS Electrical Group o 9377 West Higgins Road o Rosemont, Illinois o 60018
All products and names mentioned are the property of their respective owners. While EGS Electrical Group has made every effort at the time of publication to ensure the accuracy of the information provided herein, product specifications, configurations, prices, system/component/options availability are all subject to change without notice.
COPYRIGHT 2005 ThomasNet, Incorporated
COPYRIGHT 2005 Gale Group
Subscribe to:
Posts (Atom)